How to translate an antibiogram into a treatment: Gram+ organisms

Dr Y. Van Laethem Department of Infectious Diseases

CHU St-Pierre - Brussels

Streptococci

S. pyogenes S. agalactiae (Strepto B) always sensitive to penicillins! \rightarrow don't believe in any resistance ⇒ Contact your microbiologist and/or publish about it!

Always - R to cephalosporins/oxacillin

- R to clindamycin (except some E. faecium)

- low-level R to aminoglycosides (MIC genta < 250 μg/ml)

Penicillin-R

Pen-S strains have already relatively high MICs (intrinsic "low-level" resistance to beta-lactams of all enterococci) and MBCs > 100 are frequent, especially in *E. faecium*

 \rightarrow *In vivo* resistance

⇒ treat with glycopeptide (VRE with pen-R are frequent in the US rare in Belgium)

High-level aminoglycoside-R (MIC genta ≥ 500 µg/ml)
No in vivo synergy with penicillins/glycopeptides
!!! In vitro R expressed only with gentamicin
⇒ don't believe in amika or netil results!

Glycopeptide-R

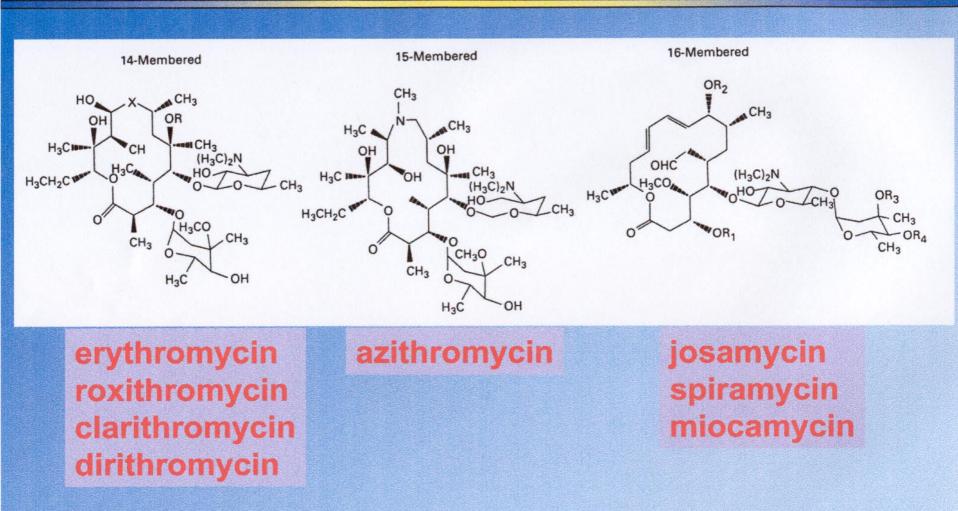
Rare in Belgium:

- <7% before 1997
- lower since avoparcin banned from animal feeding
- very rare in real infections
- \Rightarrow contact your microbiologist!
- ! E. gallinarum
- ! E. casselliflavus

are naturally R to vancomycin

Treatment: linezolid

Undetected vancomycin resistance


Van B VRE: detection problems with some automated methods (Vitek, ...)

FQ-R

Marginal activity

If $S \rightarrow$ use only for lower UTI or UTI without sepsis

The family ...

From: European Conference on Antibiotic Use in Europe (ESAC), Brussels, Belgium (Nov 15-17, 2001), Workshop # 6 :Towards an European Consensus Indications for Major Antibiotic Classes: an Exercise with the Macrolides (http://www.facm.ucl.ac.be/esac/Workshop6.htm)

Mechanisms of R to macrolides

1. MLS_B: - encoded by erm gene (A and C in Belgium)

- modification of 23S subunit of ribosomal RNA \rightarrow high-level resistance (MIC \geq 32 µg/mI)

<u>constitutive</u> (56% in Belgium – 2003)
 → resistant to all macrolides/azalide/lincosamines
 in vitro and *in vivo*

• inducible (6% in Belgium – 2003)

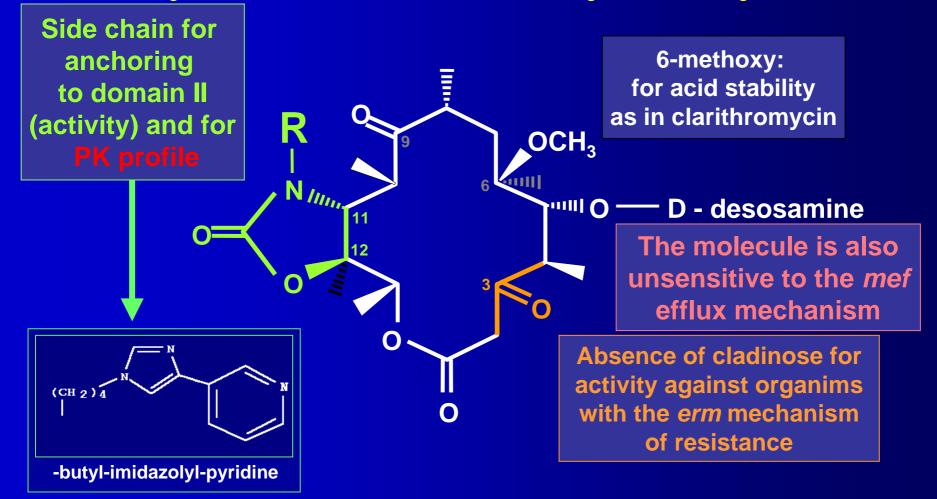
→ resistant *in vitro* to all macrolides/azalide

→ susceptible *in vitro* to licosamines (D-test)

⇒ <u>in vivo</u> R to all macrolides/azalide/lincosamines for all severe/deep infections

Mechanisms of R to macrolides

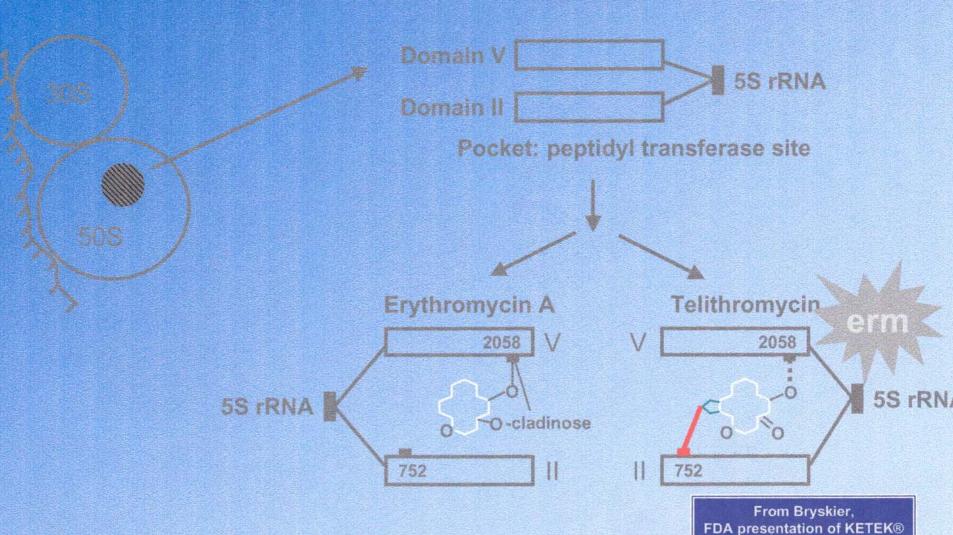
- 2. M phenotype: efflux-mediated, encoded by *mef* gene (38% in Belgium – 2003)
 - \rightarrow low-level R to 14- and 15-membered macrolides/azalide
 - → susceptible to 16-membered macrolides (miokamycin)


- lincosamines

⇒ *in vivo* - activity of lincosamines and 16-membered macrolides (?)

- some activity of 14-/15-membered macrolides, but to be considered as R, especially in severe/deep infections

([↑] expression of efflux pump *in vitro*?)


Telithromycin (RU66647/HMR 3647): key differences with erythromycin A

http://www.md.ucl.ac.be/seminfect/resume.htm

Inhibition of Protein Synthesis (2)

Inhibition of peptidyl transferase activity

TELITHROMYCIN

 Second binding site → strength : 10 times erythro if erythro (\$ 25 times erythro if erythro (\$)
 Less able than macrolides to select (®) strains in sub-MIC concentrations

Davies et al AAC 2000

Symposium 16/11/2002

Telithromycin

- Not tested by most laboratories
- Registration studies: active against "all" *S. pyogenes* except some *erm*B constitutive strains
- In Belgium: <u>>95% of high-level R strains express ermB...</u>
- \rightarrow "High" MICs (0.5-... µg/ml?)
- \Rightarrow Be cautious with severe infections!

MIC₅₀ [µg/ml] of wild type and mutant strains

		Erythromycin	Telithromycin
S. pyogenes	(WT) (<i>ermTR</i> ind.)	0.03	0,08
	(<i>ermTR</i> const.) (<i>ermB</i> ind.)	>64 >64	0,25 0,5 - 1
	(ermB const.) (mef)	>64	8 0,5
S. pneumoniae	(WT) (<i>ermB</i> const.) (<i>mef</i>)	0,03 >64 2	0,008 0,06 0,125

Penicillin-R

R due to altered PPB
→ ↓ substrate affinity
(does not involve beta-lactamases!)
→ can be overcomed by increased beta-lactamases
⇒ in vitro resistance (reduced susceptibility)
does not translate in ↑ clinical failure

rate... at least until MIC \geq 4 µg/ml

Clinical significance of 'in vitro' reduced susceptibility of *S. pneumoniae* **to β-lactams**

"MIC breakpoint above which Peni (and other β-lactams) likely ineffective in respiratory tract infections is probably > or = 4"
 » Strachan and Friedland, J Med Microbiol, '95, 43, 237

Up to now, no *S. pneumoniae* strains with MIC values ≥ 4 to commonly used respiratory β-lactams have been isolated in Belgium

» Reference lab for Pneumococci, UZLeuven

Treatment of pneumococcal pneumonia

Oral therapy: pharmacokinetic/pharmacodynamic parameters

Mean % of dosing interval for which serum concentration exceeds MIC

Antibiotic	Dose & frequency			MIC		
Or	al administration/adults	0.5	1	2	4	8
	$500 \text{ mg tid} \longrightarrow$	80	63	44	21	1
	500 mg qid →	100	84	59	28	1
Amoxicillin	1 g bid	74	61	48	33	16
	$1 \text{ g tid} \longrightarrow$	100	92	72	50	24
Amoxi/	875 mg bid	62	50	41	27	11
clavulanate	$875 \text{ mg tid} \longrightarrow$	93	75	62	41	17
Cefuroxim	500 mg bid →	>>40	≥40	<40 <<4	40 <<	<40
axetil	$500 \text{ mg tid} \longrightarrow$	>>>40	>>40	≥40 <	<40 <	<< 40

Penicillin-R

Several clinical studies have shown that in vitro R is not closely linked to morbidity/mortality

- in the 90s, same mortality:

Klugman, AJDC 1992

Pallares, NEJM 1995

Plouffe, JAMA 1996 (longer LOS for pen-R)

Clinical significance of Peni-Resistance in Pneumococcal CAP Metlay et al. Clin Inf Dis 2000;30:520

Invasive pneumococcal CAP 3 – 4

• n = 192; 19% Peni-I; 4% Peni-R

• Mortality 14% :

related to older age and co-morbidity no ss increased mortality in Peni-I and -R MIC ≥ 2 mcg/ml : suppurative complications : x4 !!

Clinical significance of Peni-Resistance in Pneumococcal CAP

Feikin et al. Am J Publ Health 2000;90:223 Invasive pneumococcal CAP 3 – 4

• n = 5837; 9% Peni-I; 8.6% Peni-R

• Mortality 12 % :

 \bullet

related to older age and co-morbidity MIC 0.12 - 2 mcg/ml : no increased mortality MIC ≥ 4 mcg/ml : mortality after >4d hospit. : x7 !!

Penicillin-R

International prospective study of pneumococcal bacteremia (Yu et al., CID 2003)

844 + blood cultures

pen-I (MIC <u><</u>0.06 μg/mI): 15%

pen-R (MIC >2 µg/ml): 9.6%

⇒ similar mortality/time to defervescence and frequency of suppurative complications

in pen-I/R or pen-S infected patients

IF treated with penicillins/cefotaxime/ceftriaxone

N.B.: not valid for cefuroxime though questionable because of elevated mean MIC (3 µg/ml) and low dosage (750 mg tid)

Clinical re-definition of Peni-Resistance of S. pneumoniae in RTI

• NCCLS (1) :

Sensitive :MIC \leq 0.06 mcg/mlIntermediate :MIC 0.1 - 1.0 mcg/mlResistant :MIC \geq 2.0 mcg/ml

 Suggested clinical re-definition (2):
 Sensitive: MIC ≤ 1.0 mcg/ml Intermediate :MIC 2.0 mcg/ml Resistant: MIC ≥ 4.0 mcg/ml (1) NCCL5, 1998
 (2) Arch Intern Med 2000;160:1399

Macrolide-R

Similar to S pyogenes

- High-level R: R to all macrolides/azalide/lincosamines erm gene (A and C in Belgium)
 - > 80-90% in Europe
 - < 50% in the US
- Low-level R: efflux-mediated, *mef* gene
 - MIC 1-16 µg/ml
 - < 10% in Belgium
 - > 50% in the US

Due to the high rate of high-level macrolide-R, if erythro-R:

R to all macrolides/azalide/lincosamines

Macrolide-R

Several clinical failures reported - in Europe (high-level and low-level R) Garau: *CID* 2002 - in US (mostly low-level R) Kelley: *CID* 2000 Fogarty: *CID* 2000

Telithromycin

Not tested in most laboratories

Retains in vitro activity against macrolide-R strains

- **BUT MICs shifting to the right**
- ⇒ May be used in macrolide-R S. pneumoniae infections but - few data in more severe cases/bacteremia
 - close follow-up of patients and surveillance mandatory

MIC₅₀ [µg/ml] of wild type and mutant strains

		Erythromycin	Telithromycin
S. pyogenes	(WT) (<i>ermTR</i> ind.)	0.03	0,08
	(<i>ermTR</i> const.) (<i>ermB</i> ind.)	>64 >64	0,25 0,5 - 1
	(ermB const.) (mef)	>64	8 0,5
S. pneumoniae	(WT) (<i>ermB</i> const.) (<i>mef</i>)	0,03 >64 2	0,008 0,06 0,125

Telithromycin


Not tested in most laboratories

Retains in vitro activity against macrolide-R strains

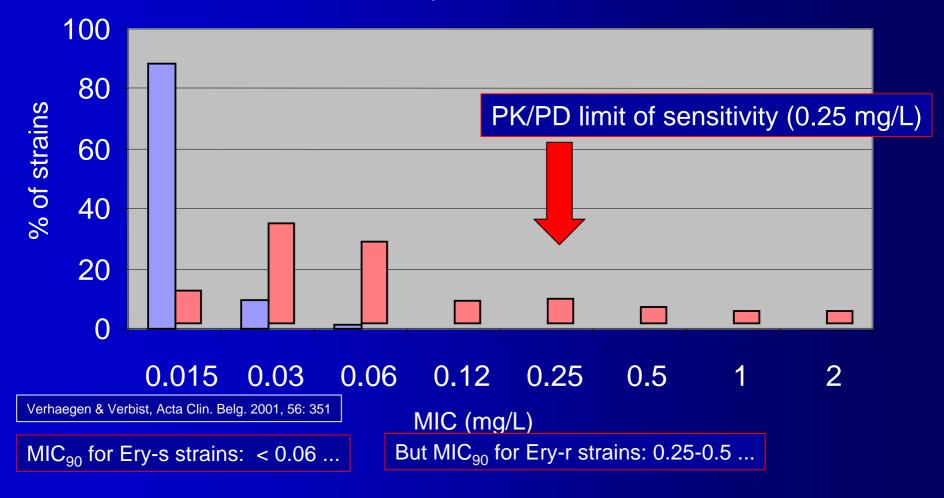
- **BUT MICs shifting to the right**
- ⇒ May be used in macrolide-R S. pneumoniae infections but - few data in more severe cases/bacteremia
 - close follow-up of patients and surveillance mandatory

Telithromycin and Belgian S. pneumoniae

- 392 Erythro-sus *S.pneumoniae*
 - MIC_{50 Telithro}: 0.015
 - MIC_{90Telithro}: 0.03
- 245 Erythro-res *S.pneumoniae*
 - MIC_{50Telithro}: 0.06
 - MIC_{90Telithro}: 0.5

Presented at the IDAB symposium 20/09/2002

Symposium 16/11/2002


Telithromycin

Not tested in most laboratories

Retains in vitro activity against macrolide-R strains

- **BUT MICs shifting to the right**
- ⇒ May be used in macrolide-R S. pneumoniae infections but - few data in more severe cases/bacteremia
 - close follow-up of patients and surveillance mandatory

Which are the sensivities of *S. pneumoniae* towards telithromycin in Belgium in 2000 ? Ery-S Ery-r

http://www.md.ucl.ac.be/seminfect/resume.htm

S. pneumoniae

<u>FQs</u>

- > 99% of Belgian strains are S
- BUT
- MICs close to MIC breakpoint for most FQs (except moxifloxacin)
- AUIC and peak/MIC even closer to PK/PD breakpoint due to 1st step mutation in several strains (?)
- ⇒ If FQ-S: don't use oflo or cipro
 - use high-dose levofloxacin
 - prefer moxifloxacin

NFQ: PK/PD vs. S. pneumoniae

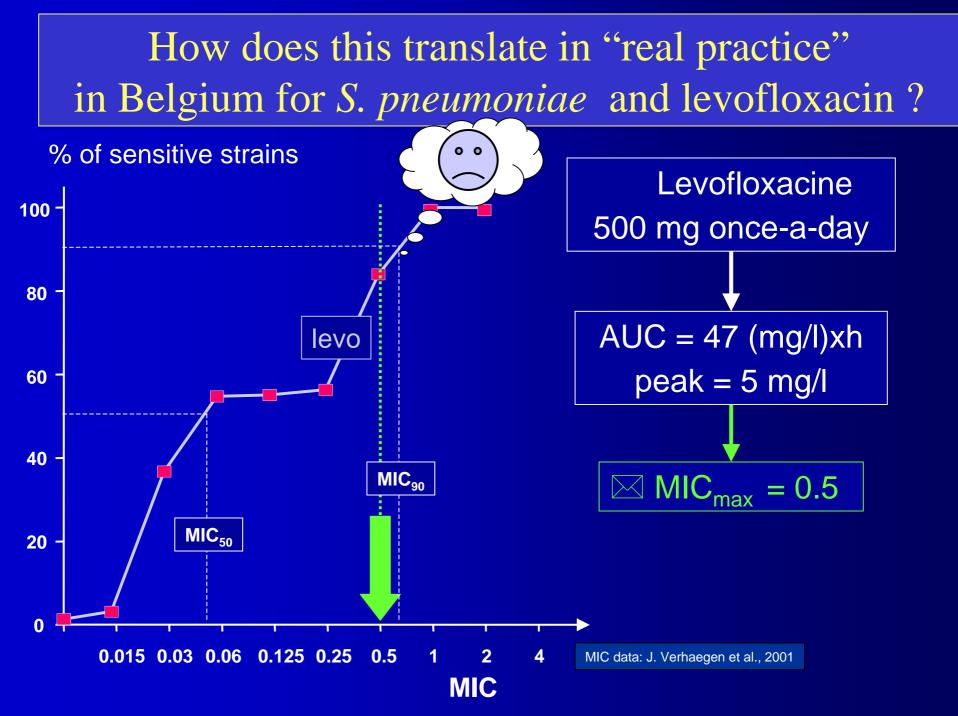
	DOSE (mg)	MIC90 (mcg/ml)	Peak/MIC	AUIC (mcg/ml/h)
LFX	500	1-2	3-6	24-48
MOX	400	0.125-0.25	9-18	96-192

AUIC breakpoint for successful outcome = 35 - 40

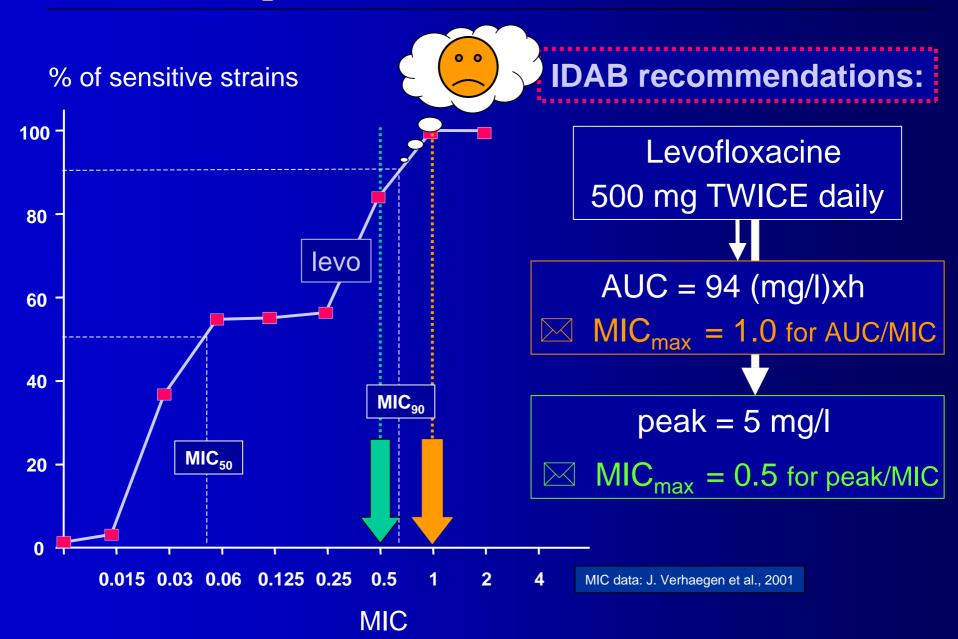
Peak/MIC > 10: important for prevention of resistance selection

JAC 2000;46:669

FQ's resistance development & selection: stepwise increased MIC's MIC FQ A: Peak/MIC>10 [AB] serum FQ B: peak/MIC <10



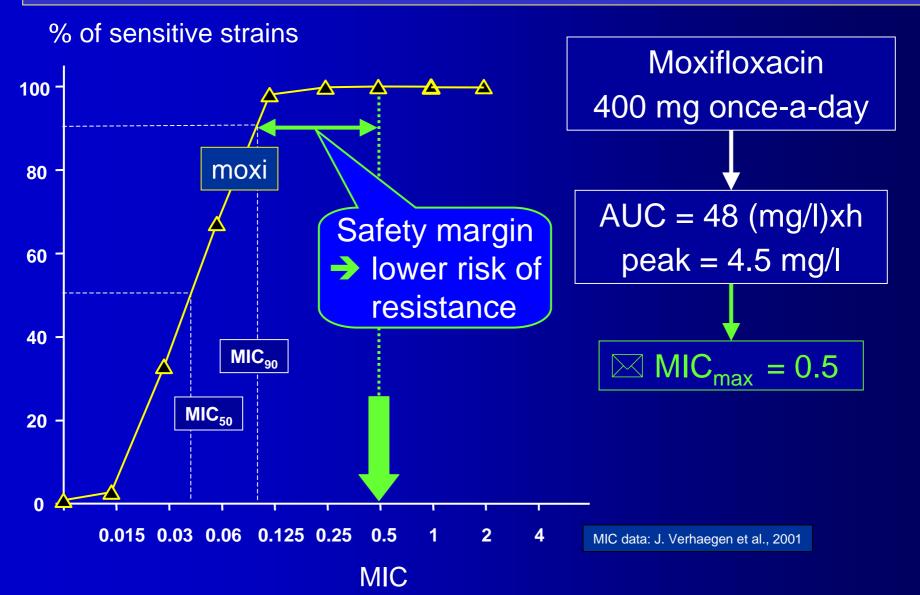
Symposium 16/11/2002


S. pneumoniae

<u>FQs</u>

- > 99% of Belgian strains are S
- BUT
- MICs close to MIC breakpoint for most FQs (except moxifloxacin)
- AUIC and peak/MIC even closer to PK/PD breakpoint due to 1st step mutation in several strains (?)
- ⇒ If FQ-S: don't use oflo or cipro
 - use high-dose levofloxacin
 - prefer moxifloxacin

Can we improve the situation with levofloxacin?



S. pneumoniae

<u>FQs</u>

- > 99% of Belgian strains are S
- BUT
- MICs close to MIC breakpoint for most FQs (except moxifloxacin)
- AUIC and peak/MIC even closer to PK/PD breakpoint due to 1st step mutation in several strains (?)
- ⇒ If FQ-S: don't use oflo or cipro
 - use high-dose levofloxacin
 - prefer moxifloxacin

What about moxifloxacin and *S. pneumoniae* in Belgium ?

S. aureus oxa-S

- Do not question!
- Do not use glycopeptide in non-lgE-mediated allergy!
 - \Rightarrow suboptimal clinical outcome:

prolongedfeverbacteremia

(Levine et al. Ann Int Med 1991)

S. aureus oxa-S

In vivo: FQs active clinically

S. aureus oxa-S/MRSA

In vivo: FQs inactive clinically

Macrolide-R

Same mechanisms as for streptococci

- MLS_B: erm gene-encoded (A and C in Belgium) 1.
 - constitutive

 - \rightarrow R *in vitro* \rightarrow R *in vivo* to all macrolides/azalide/lincosamines
 - inducible (D-test)
 - macrolides/azalide: | R in vitro | R in vivo
 - lincosamines: | S in vitro → R if D-test performed
 R in vivo, at least in deep, severe infections
- Efflux: msr gene-encoded; no "D-zone" 2.
 - \Rightarrow | macrolides/azalide: R in vitro \rightarrow R in vivo lincosamines: S in vitro \rightarrow S in vivo

cephalosporins (all) carbapenems

MRSA

<u>SXT-S</u>

>99% S in Belgium since 10 years **<u>Clinically</u>: scarce data** • animal models of endocarditis: SXT < vanco (de Gorgolas, AAC 1995) • humans (IVDU) with septicemia in a RDB study: (Markowitz et al., Ann Int Med 1992) SXT < vanco (p 0.02) for MRSA + MSSA failure | mostly in right-side endocarditis only in MSSA-infected patients

> ⇒ everyday use in mild to moderate infections: valuable alternative

Glycopeptide-S

 Cure rate in severe infections often disappointing 50-70% (HAP, VAP, endocarditis, ...)

 Recent studies show that significant risk for vancomycin treatment failure could begin to emerge not only for MICs between 4-16 µg/ml [(h)GISA]

> (Fridkin, *CID* 2003) but also with increasing vancomycin MICs in the (S)-range: successful treatment: MIC < 0.5 μg/ml: 55.6% MIC 1-2 μg/ml: 9.5%

(Sakoulas et al., JCM 2004)

 \Rightarrow What about other drugs (linezolid) in such instances?

Glycopeptide-R/I

1. Call your microbiologist! ? Mistake, from Petri dish to computer... 2. First detected in 1997 for (h)VISA **VISA** and in 2002 for GRSA (3 strains, all in the US) 3. Very rare in Belgium I frequently reported as S with disk method (Etest should be mandatory...)
 I or R "not" detected by Vitek or Microscan BUT **Problem of inoculum size** NCCLS recomends 5.10⁵ CFU vanco-(1) subpopulations: 10⁻⁶ to 10⁻⁷

Glycopeptide-R/I

Suspect "vanco-S" strains if glycopeptide therapy is failing

Key clinical features

- positive BC > 7 days of treatment
- MRSA still present in a usually sterile site
 - > 21 days of treatment
 - and/or in deep or prosthetic infections

(high bacterial load)

(Howden, *CID* 2004; *EJCMID* 2005) (Charles, *CID* 2004)

Treatment: high failure rates with glycopeptides → linezolid (or: combination of high dose vancomycin + rifampicin or fusidic acid + SXT)